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�e solutions for this sheet do not have to be submi�ed. �e sheet will be solved in the �rst exercise
session on 26.09.2022.

Exercises that are marked by ∗ are challenge exercises.

Exercise 0.1 Induction.

a) Prove by mathematical induction that for any positive integer n,

1 + 2 + · · ·+ n =
n(n+ 1)

2
.

• Base Case.
Let n = 1. �en:

1 =
1 · 2
2

.

• Induction Hypothesis.
Assume that the property holds for some positive integer k. �at is:

1 + 2 + · · ·+ k =
k(k + 1)

2
.

• Inductive Step.
We must show that the property holds for k + 1 summands.

1 + 2 + · · ·+ k + k + 1 =
k(k + 1)

2
+ k + 1

=
k(k + 1) + 2(k + 1)

2

=
(k + 1)(k + 2)

2
.

By the principle of mathematical induction, this is true for any positive integer n.

b) (�is subtask is from August 2019 exam). Let T : N → R be a function that satis�es the
following two conditions:

T (n) ≥ 4 · T (n2 ) + 3n whenever n is divisible by 2;
T (1) = 4.

Prove by mathematical induction that

T (n) ≥ 6n2 − 2n

holds whenever n is a power of 2, i.e., n = 2k with k ∈ N0.



• Base Case.
Let k = 0, n = 20 = 1. �en:

T (1) = 4 ≥ 6 · 12 − 2 · 1

• Induction Hypothesis.
Assume that the property holds for some positive integer m = 2k. �at is:

T (m) ≥ 6m2 − 2m

• Inductive Step. We must show that the property holds for 2m = 2k+1.

T (2m) ≥ 4 · T (m) + 3 · 2 ·m
≥ 24m2 − 8m+ 6m

= 24m2 − 2m

≥ 24m2 − 4m

= 6 · (2m)2 − 2 · (2m) .

By the principle of mathematical induction, this is true for any integer n that is a power of 2.

Asymptotic Growth
When we estimate the number of elementary operations executed by algorithms, it is o�en useful to
ignore smaller order terms, and instead focus on the asymptotic growth de�ned below. We denote by
R+ the set of all (strictly) positive real numbers and by R+

0 the set of nonnegative real numbers.

De�nition 1. Let f, g : N→ R+ be two functions. We say that f grows asymptotically faster than g if
lim
n→∞

g(n)
f(n) = 0.

�is de�nition is also valid for functions de�ned on R+ instead of N. In general, lim
n→∞

g(n)
f(n) is the same

as lim
x→∞

g(x)
f(x) if the second limit exists.

Exercise 0.2 Comparison of functions part 1.

Show that

a) f(n) := n log n grows asymptotically faster than g(n) := n.

Solution:
lim
n→∞

n

n log n
= lim

n→∞

1

log n
= 0 ,

hence by De�nition 1, f(n) := n log n grows asymptotically faster than g(n) := n.

b) f(n) := n3 grows asymptotically faster than g(n) := 10n2 + 100n+ 1000.

Solution:
lim
n→∞

10n2 + 100n+ 1000

n3
= lim

n→∞

(10
n

+
100

n2
+

1000

n3

)
= 0 ,

hence by De�nition 1, f(n) := n3 grows asymptotically faster than g(n) := 10n2 + 100n+ 1000.
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c) f(n) := 3n grows asymptotically faster than g(n) := 2n.

Solution:
lim
n→∞

2n

3n
= lim

n→∞

(2
3

)n
= 0 ,

hence by De�nition 1, f(n) := 3n grows asymptotically faster than g(n) := 2n.

�e following theorem can be useful to compute some limits.

�eorem 1 (L’Hôpital’s rule). Assume that functions f : R+ → R+ and g : R+ → R+ are di�erentiable,
lim
x→∞

f(x) = lim
x→∞

g(x) =∞ and for all x ∈ R+, g′(x) 6= 0. If lim
x→∞

f ′(x)
g′(x) = C ∈ R+

0 or lim
x→∞

f ′(x)
g′(x) =∞,

then

lim
x→∞

f(x)

g(x)
= lim

x→∞

f ′(x)

g′(x)
.

Exercise 0.3 Comparison of functions part 2.

Show that

a) f(n) := n1.01 grows asymptotically faster than g(n) := n lnn.

Solution: We apply �eorem 1 to compute

lim
x→∞

x lnx

x1.01
= lim

x→∞

lnx

x0.01
= lim

x→∞

(lnx)′

(x0.01)′
= lim

x→∞

1/x

0.01x−0.99
= lim

x→∞

1

0.01x0.01
= 0 .

Hence by De�nition 1, f(n) := n1.01 grows asymptotically faster than g(n) := n lnn.

b) f(n) := en grows asymptotically faster than g(n) := n.

Solution: We apply �eorem 1 to compute

lim
x→∞

x

ex
= lim

x→∞

x′

(ex)′
= lim

x→∞

1

ex
= 0 .

Hence by De�nition 1, f(n) := en grows asymptotically faster than g(n) := n.

c) f(n) := en grows asymptotically faster than g(n) := n2.

Solution: We apply �eorem 1 to compute

lim
x→∞

x2

ex
= lim

x→∞

(x2)′

(ex)′
= lim

x→∞

2x

ex
= 2 lim

x→∞

x′

(ex)′
= 2 lim

x→∞

1

ex
= 0 .

Hence by De�nition 1, f(n) := en grows asymptotically faster than g(n) := n2.

d)∗ f(n) := 1.01n grows asymptotically faster than g(n) := n100.

Solution: Note that we can rewrite g(x)
f(x) as

x100

(1.01)x
=

e100 lnx

ex ln(1.01)
= e100 lnx−ln(1.01)x.
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We have
lim
x→∞

(100 lnx− ln(1.01)x) = lim
x→∞

x

(
100

lnx

x
− ln(1.01)

)
= −∞,

and therefore lim
x→∞

x100

(1.01)x = 0. Hence by De�nition 1, f(n) := 1.01n grows asymptotically faster
than g(n) := n100.

e)∗ f(n) := log2 n grows asymptotically faster than g(n) := log2 log2 n.

Solution: De�ne y := log2 x. �en y → ∞ as x → ∞, and therefore lim
x→∞

g(x)
f(x) = lim

y→∞
log2 y

y .
Remembering that log2 y = ln y/ ln 2, we can apply �eorem 1 to compute

lim
y→∞

log2 y

y
=

1

ln 2
lim
y→∞

ln y

y
=

1

ln 2
lim
y→∞

(ln y)′

y′
=

1

ln 2
lim
y→∞

1/y

1
= 0.

Hence by De�nition 1, f(n) := log2 n grows asymptotically faster than g(n) := log2 log2 n.

f)∗ f(n) := 2
√

log2 n grows asymptotically faster than g(n) := log1002 n.

Solution:

lim
n→∞

log1002 n

2
√

log2 n
= lim

n→∞

2log2(log
100
2 n)

2
√

log2 n
= lim

n→∞

2100 log2 log2 n

2
√

log2 n
= lim

n→∞
2100 log2 log2 n−

√
log2 n

Notice that

lim
n→∞

(
100 log2 log2 n−

√
log2 n

)
= lim

n→∞

(
−
√
log2 n

(
1− 100

log2 log2 n√
log2 n

))
= −∞ .

Hence
lim
n→∞

log1002 n

2
√

log2 n
= lim

n→∞
2100 log2 log2 n−

√
log2 n = 0 .

�erefore, by De�nition 1, f(n) := 2
√

log2 n grows asymptotically faster than g(n) := log1002 n.

g)∗ f(n) := n0.01 grows asymptotically faster than g(n) := 2
√

log2 n.

Solution:

lim
n→∞

2
√

log2 n

n0.01
= lim

n→∞

2
√

log2 n

2log(n0.01)
= lim

n→∞

2
√

log2 n

20.01 log2 n
= lim

n→∞
2
√

log2 n−0.01 log2 n

Notice that

lim
n→∞

(√
log2 n− 0.01 log2 n

)
= lim

n→∞

(
− 0.01 log2 n

(
1−

√
log2 n

0.01 log2 n

))
= −∞ .

Hence

lim
n→∞

2
√

log2 n

n0.01
= lim

n→∞
2
√

log2 n−0.01 log2 n = 0 .

�erefore, by De�nition 1, f(n) := n0.01 grows asymptotically faster than g(n) := 2
√

log2 n.
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Exercise 0.4 Simplifying expressions.

Simplify the following expressions as much as possible without changing their asymptotic growth rates.

Concretely, for each expression f(n) in the following list, �nd an expression g(n) that is as simple as
possible and that satis�es lim

n→∞
f(n)
g(n) ∈ R+.

It is guaranteed that all functions in this exercise take values in R+ (you don’t have to prove it).

a) f(n) := 5n3 + 40n2 + 100

Solution: Let g(n) := n3. �en indeed we have

lim
n→∞

f(n)

g(n)
= lim

n→∞

(
5 +

40

n
+

100

n3

)
= 5 ∈ R+.

b) f(n) := 5n+ lnn+ 2n3 + 1
n

Solution: Let g(n) := n3. �en indeed we have

lim
n→∞

f(n)

g(n)
= lim

n→∞

( 5

n2
+

lnn

n3
+ 2 +

1

n4

)
= 2 ∈ R+.

c) f(n) := n lnn− 2n+ 3n2

Solution: Let g(n) := n2. �en indeed we have

lim
n→∞

f(n)

g(n)
= lim

n→∞

( lnn
n
− 2

n
+ 3
)
= 3 ∈ R+.

d) f(n) := 23n+ 4n log5 n
6 + 78

√
n− 9

Solution: By the properties of logarithms, 4n log5 n
6 = 24n log5 n = 24n lnn

ln 5 . Let g(n) := n lnn.
�en indeed we have

lim
n→∞

f(n)

g(n)
= lim

n→∞

( 23

lnn
+

24

ln 5
+

78√
n lnn

− 9

n lnn

)
=

24

ln 5
∈ R+.

e) f(n) := log2
√
n5 +

√
log2 n

5

Solution: By the properties of logarithms,

log2
√
n5 =

5

2 ln 2
lnn,

and √
log2 n

5 =

√
5

ln 2
·
√
lnn.

Let g(n) := lnn. �en indeed we have

lim
n→∞

f(n)

g(n)
= lim

n→∞

( 5

2 ln 2
+

√
5

ln 2
· 1√

lnn

)
=

5

2 ln 2
∈ R+.
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f)∗ f(n) := 2n3 +
(

4
√
n
)log5 log6 n +

(
7
√
n
)log8 log9 n

Solution:

lim
n→∞

(
7
√
n
)log8 log9 n(

4
√
n
)log5 log6 n = lim

n→∞

n
1
7
log8 log9 n

n
1
4
log5 log6 n

= lim
n→∞

n
1
7
log8 log9 n− 1

4
log5 log6 n .

Notice that
lim
n→∞

(1
7
log8 log9 n−

1

4
log5 log6 n

)
= −∞ ,

since loga x ≤ logb y if x ≤ y and a ≥ b. Hence

lim
n→∞

(
7
√
n
)log8 log9 n(

4
√
n
)log5 log6 n = lim

n→∞
n

1
7
log8 log9 n− 1

4
log5 log6 n = 0 .

Moreover, we also have

lim
n→∞

2n3(
4
√
n
)log5 log6 n = 2 lim

n→∞
n3− 1

4
log5 log6 n = 0 .

Let g(n) := n
1
4
log5 log6 n. �en indeed we have

lim
n→∞

f(n)

g(n)
= 1 ∈ R+.

Exercise 0.5∗ Finding the range of your bow.

To celebrate your start at ETH, your parents gi�ed you a bow and (an in�nite number of) arrows. You
would like to determine the range of your bow, in other words how far you can shoot arrows with it.
For simplicity we assume that all your arrow shots will cover exactly the same distance r, and we de�ne
r as the range of your bow. You also know that this range is at least r ≥ 1 (meter).

You have at your disposition a ruler and a wall. You cannot directly measure the distance covered by
an arrow shot (because the arrow slides some more distance on the ground a�er reaching distance r),
so the only way you can get information about the range r is as follows. You can stand at a distance `
(of your choice) from the wall and shoot an arrow: if the arrow reaches the wall, you know that ` ≤ r,
and otherwise you deduce that ` > r. By performing such an experiment with various choices of the
distance `, you will be able to determine r with more and more accuracy. Your goal is to do so with as
few arrow shots as possible.

a) What is a fast strategy to �nd an upper bound on the range r ? In other words, how can you
�nd a distance D ≥ 1 such that r < D, using few arrow shots ? �e required number of shots
might depend on the actual range r, so we will denote it by f(r). Good solutions should have
f(r) ≤ 10 log2 r for large values of r.

Solution: One possible fast strategy is to �rst shoot an arrow at distance 2 from the wall, and as
long as the arrow reaches the wall, you double your distance to the wall for the next shot. More
formally, let `i denote your distance to the wall for the i-th shot. �en this startegy uses distances
given by `i = 2i, and does this until you �nd a distance `t for which your arrow does not reach the
wall. D is then given by D = `t = 2t, and the required number of shots is f(r) = t, the smallest
integer t such that r < 2t.
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�is strategy therefore needs f(r) = dlog2 re shots, and indeed

f(r) = dlog2 re ≤ 1 + log2 r ≤ 10 log2 r

for all r ≥ 21/9.

b) You are now interested in determining r up to some additive error. More precisely, you should �nd
an estimate r̃ such that the range is contained in the interval [r̃ − 1, r̃ + 1], i.e. r̃ − 1 ≤ r ≤ r̃ + 1.
Denoting by g(r) the number of shots required by your strategy, your goal is to �nd a strategy with
g(r) ≤ 10 log2 r for all r su�ciently large.

Solution: You start by performing the strategy described in part (a). Note that this allows you to
�nd a distance D such that r ∈ [12D,D] using f(r) = dlog2 re shots. You will then iteratively �nd
smaller and smaller intervals [a, b] ⊆ [12D,D] with r ∈ [a, b], until you get an interval whose length
is at most 2 (and then you can take r̃ to be the center of this interval).

You start by shooting an arrow from distance (12D + D)/2 = 3
4D. If the arrow reaches the wall,

then you know that r ∈ [34D,D], and otherwise you deduce that r ∈ [12D, 34D]. Note that in
both cases, the length of the interval of possible ranges r was divided by 2. In the next step, if you
know that r ∈ [34D,D] then you shoot an arrow from distance (34D +D)/2, and if you know that
r ∈ [12D, 34D] then you shoot an arrow from distance (12D + 3

4D)/2, which allows you to again
divide the length of the interval of possible ranges by 2. You carry on this procedure until you �nd
an interval [a, b] of length b− a ≤ 2 satisfying r ∈ [a, b], and you de�ne r̃ = (a+ b)/2.

By construction, this strategy �nds an estimate r̃ such that r̃ − 1 ≤ r ≤ r̃ + 1. Let’s compute the
number of required shots g(r). You start with f(r) = dlog2 re shots in order to perform the strategy
described in (a), and then you need t′ additional shots to �nd the interval [a, b]. Note that you start
with the interval of possible ranges [12D,D] which has length D/2, and with each additional shot
you divide this length by 2, until you reach a length smaller than 2. �erefore, t′ is the smallest
integer such that D/2t

′+1 ≤ 2, i.e. D ≤ 2t
′+2. �is means that t′ = max{dlog2De − 2, 0} (the

maximum with 0 is taken because you cannot have a negative number of shots). �is is at most
dlog2 2re = 1 + dlog2 re because D ≤ 2r, so the total number of required shots is

g(r) = f(r) + t′ ≤ f(r) + dlog2 re+ 1 = 2dlog2 re+ 1 ≤ 2 log2 r + 3,

which is smaller than 10 log2 r for all r ≥ 23/8.

c) Coming back to part (a), is it possible to have a signi�cantly faster strategy (for example with f(r) ≤
10 log2 log2 r for large values of r) ?

Solution: Let h : R+ → R+ be any strictly increasing function with lim
r→∞

h(r) =∞. We will show
that there exists a strategy that �nds some D > r using f(r) := dh(r)e shots.

Since h : R+ → R+ is strictly increasing, it is bijective and therefore has an inverse h−1 : R+ → R+

which is also strictly increasing. Moreover, we have lim
r→∞

h−1(r) =∞ because lim
r→∞

h(r) =∞. �e
strategy is then to shoot the arrow at the i-th step with a distance of h−1(i) from the wall, until we
get to a step t′′ where the arrow doesn’t reach the wall (i.e. h−1(t′′) > r). �e number of required
shots is then t′′, which is the smallest integer satisfying h−1(t′′) > r, or equivalently t′′ > h(r).
�erefore, t′′ = dh(r)e as claimed.

For the particular example of f(r) ≤ 10 log2 log2 r, take the function h(r) = log2 log2 r. �is
corresponds to shooting an arrow from distance h−1(i) = 22

i in the i-th step. �en the number of
required shots is

f(r) = dlog2 log2 re ≤ 1 + log2 log2 r,

which is smaller than 10 log2 log2 r for all r ≥ 22
1/9 .

7


